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We consider the flow of gas acted on by a detonation wave converging at a constant rate 

under Chapman-Jouguet conditions in a medium with a variable initial density. The 

dependence of the character of flow before and after focusing of the wave on the density 

distribution and on the heat capacity ratio is investigated. 
In Section 2 we consider convergent and divergent self-similar detonation waves in a 

medium with a constant initial density. The self-similarity index, which turns out to be 

nonunique, is determined. 

1, Let a strong detonation wave move towards the center of symmetry in a gas of vari- 
able density PO = Ar-O (A is a constant, r is the distance to the center of symmetry). 

The velocity B of the detonation wave depends on the energy influx 8 into a unit mass 

of gas at the wave front. We consider both of these quantities constant. 

Following p], we can represent the velocity U , the density p , and the pressure p as 

v = f v (x4), p = -$- R @I, 
r 

P= +w, - k=Dlt[ 

The motion of the gas in the perturbed zone is described by Eqs. p] 

dZ z {z(V--f)~+(v--1)(y- 1)I~(V-~)~-[2(~~-~)$~t(y-2)iy~Zj 
a-= (V-~)[V(v-I)~+(o/y-vv)Z] -- .- 

fl ‘) 

dlnh z-(V - I)2 
dV= V(V-i)2f (O/T- YV) z (z=T) (1.3) 

o(v-I) 
ZR1-Y=C1[R(V-Q] “- h-2 (2.4) 

Here y is the ratio of heat capacities, v = 1. 2, 3 for plane, cylindrical and spherical 
symmetry, respectively and the constant 01 can be determined from the initial condi- 

tions. 
In the event of fulfillment of the Chapman-Jouguet conditions at the front of a strong 

detonation wave we have the initial conditions (the values of the parameters at the deto- 

nation wave are denoted by the subscript 2) 
1 T’& vs=----- ~ y-+1* z2=(r+i)2’ 

Rz= ‘+’ - for hi = 1 
r 

(1.5) 

Focusing of the detonation wave coincides with the instant t= 0 , 
In order to solve tbe problem we must construct the integral curve on the zI/ plane 

which emerges from the initial point (1.5) for k = 1 and arrives at the point 0 (0. 0) at 
X=oD, where h must vary monotonously along the curve. Analysis of Eqs, (1.2) and 

(1.3) implies that a convergent detonation wave under Chapman-Jouguet conditions is 
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possible only for UJ k( V - 1) y/( y + 1) , 

Let us consider the spherical case ( v = 3). For W > 2y/( y + 1) the derivative dZ/dl/> 0 
at the initial point (1.5). For UJ = 2Y/( Y + 1) the initial point is singular and is associ- 
ated with one positive and one negative value of dZ/dV. In order to make W = 2y/(y + 1) 

the limiting case, we take just the positive of the two values of dZ/dl/ for W > 2y/( y+ 1); 
only one integral cufvd emerges from the singular point in this direction. 

Numerical solution of Eqs. (1.2) and (1.3) on a computer indicated that in the case 
UJ = 2y/( y + 1) , depending on the value of y , the gas flow before and after the instant of 

detonation wave focusing can occur in one of five states. Each state is characterized by 
a distinctive position of the integral curve emerging from initial point (1.5) relative to 

Fig. 1 

Fig. 2 

the singular points of Eq. (1.2). The character of the 
singular points of Eq. (1.2) is described in [l]. 

State A for lcy~l.790. Attheinstant $=O 
the velocity of the gas is the same throughout the 
space and is directed towards the center. For ti > 0 a 

shock wave moves through the gas away from the cen- 
ter of symmetry. The intensity of the shock wave 
diminishes as y approaches 1.790. 

State 6’ for y=l.790. Attheinstant $=O the 

velocity of the gas becomes zero everywhere in the 

space, and the shock wave which arises at t = 0 for 

smaller values of y becomes a weak discontinuity. 
State c for 1,79O<y<2.345, For $=O the 

velocity of the gas is the same everywhere in the space 
and is directed away from the center. The direction 
of the velocity changes under the influence of the pres- 

sure gradient. The weak discontinuity is manifested 
as discontinuities of the derivatives of higher order 
than the first. 

State D for y=2.345. For $=O thevelocity 

of the gas is the same everywhere in the space and is 

directed away from the center. Whereas in the above 

cases the phase velocity of the particles filling the 
space can be either supersonic or subsonic for ti > 0, 
in this case the phase velocities are supersonic only. 

State E for y>2. 345. For t >O a void arises 

at the center of symmetry and propagates with a cer- 
tain velocity. 

A similar breakdown of flow states occurs for 

w > ZY/(Y + 1) . 
We note that the acceleration of the gas particles at the detonation wave front is infi- 

nitely large for W > 2y/( y+ 1) ; for ui = 2y/( Y+ 1) the acceleration is finite. 
The curves of velocity distribution in the stream for W = 2y/( y + 1) and for various 

values of y in the cases t < 0 and 6 > 0 appear in Figs. 1 to 3. The vertical axis repre- 
sents V/c , where 0 =( y + 1)-b l sgn t ; the horizontal axis represents either h or l/i. 

The velocities directed towards the center of symmetry are considered negative ; the 
velocities directed away from the center of symmetry are considered positive. 
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Fig. 1 represents flow up to the instant of focusing of the detonation wave ( t < 0) ; 
Figs. 2 and 3 represent flow after the instant of focusing ( t > 0). 

2, The problem of propagation of a strong convergent detonation wave in a gas with 

a constant initial velocity is considered in 121. In this section we solve the problem by 
the method described in Cl]. 

Let the front of the strong detonation wave converge in accordance with the law 

r, = altjs (2.i) 

We can write the velocity U , the density p , and the pressure p as 

v= f v (0 P = POR (I), P =po$ P(4), 
r 

4=- 
01s 

(2.2) 

The equations of motion [l] then become 

2 {[2 (V-l)+ v (y-i) V] (V-S)’ - (y -l).V (V - 1) (V - 8) - 
dZ 

dV- 
- [2 (V - 1) + 27-r (i-8) (r - i)] Z} 

(V - 6) {V (V - I) (V - 8) + [2T_3(2 - 6) - YV] 2) (2.3) 

dlnE 
dV- 

z- (V - 6)s 
v(v-i)(v-~)+[2y-1(1-6)-vV]z 

(2.4) 

2 (6-l) 2 
- -_ 

ZR1-Y=C1[R(V---6)] “’ 4 ’ 
(2.5) 

Here we assume that 8 is proportional toDa , that both of these quantities are varia- 
ble, and that the Chapman-Jouguet conditions are fulfilled. The following Eqs. are then 

fulfilled at the front of the strong detonation wave : 

Analysis of Eqs. (2.9) and (2.4) indicates that convergent and divergent detonation 

waves are possible under the following respective conditions: 

0<6fL S.\(6<1 (“* = 3 (Y + 1) 
Y (2 + v) + 3 ) 

(2.7) 

The parabola 2 = ( I/ - 6)a * rn the plane zI/ has two singular points. For 6.s 6<1, i.e. 

in the case of a divergent detonation wave, initial point (2.6) lies between these singular 
points on the parabola 2 = ( I/ - 6)a. The integral curve in this case passes through the 

Fig. 3 

upper singular point (node) of the parabola .k? = ( I/ - 6)a ; 
it must then be extended to the infinitely distant sin- 
gular point (the saddle point z=m, I/= 2v-‘y-‘(l- 6)) 

which corresponds to the center of symmetry in physi- 
cal space. For 6 = 1 we obtain the solution of Ia. B. 
Zel’dovich. In this case D = const ,% = const . The 

remaining parameters can be realized by assuming 
either that 8 is proportional toDa or that 8 = %ora ’ 
wherem=(6-1)/d. 

We note that for 6 ,< 6 s 1 the acceleration of the 
gas particles at the detonation wave front is infinitely 
large, while for 6 = 6. it is possible to have a divergent 

detonation wave under the Chapman-Jouguet conditions, 
in which case the acceleration at the detonation wave front is finite. 

In the case of a convergent detonation wave for 6 = 6. initial point (2.6) is singular 
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(a node for y > 1) and is associated with a positive and a negative value of dZ/dt/, 

Considering I/ = 6, as a limiting value for the smaller 6 for which &?‘/d V s 0 , we 

choosethe positive value of dZ/d Et’. only on integral curve emerges from the singular 
point in the positive direction, so that the velocity of the gas particles behind the deto- 

nation wave decreases monotonously to zero along this curve. For 6 = 6. the accelera- 
tion at the detonation wave front is finite. In paper [2-J it is wrongly assumed that this 
acceleration is infinitely large. At the initial point the expression for the derivative is 

k = ‘jB (47 - 5 + v48y2 + 104~ + 105) 

h- = l/s (r - 2 f 1/2w + 26-r + 54) 

for v = 2 

for v=3 

The upper sign in (2.8) refers to a convergent detonation wave ; the lower sign refers 
to a divergent wave. 

For 6 > 6. the acceieration at the detonation wave front is infinitely large. Initial 

point (2.6) in this case lies above the upper singular point on the parabola Z =( I/- 6f. 
It should be noted that for 8 proportional toD2 the self-similarity index is not uni- 

quely determined. But if we require that the acceleration of the gas particles at the 
detonation wave front be finite, then 6 is unique. For Q = &72m the index 6 is unique. 

The author is grateful to S. V. Fal’ltovich for his comments and discussion of the 
results and to A. I. Dmitriev for his assistance in carrying out the computer calculations. 
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